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Noise and Bifurcations 
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The influence of while noise on bifurcating dynamical systems is investigated 
using both Fokker-Planck and functional integral methods. Noise leads to fuzzy 
bifurcations where physically relevant quantities become smooth functions of 
the bifurcation parameters. We study dynamical and probabilistic quantities, 
such as invariant measures, Liapunov exponents, correlation functions, and exit 
times. The behavior of these quantities near the deterministic bifurcation point 
changes for distinct values of the control parameter. Therefore the very concept 
of bifurcation point becomes meaningless and must be replaced by the notion of 
bifurcation region. 

KEY WORDS: Dynamical systems; bifurcations; noise; invariant measures; 
Liapunov exponent. 

1. I N T R O D U C T I O N  

The time evolution of physical systems with a finite number of degrees of 
freedom may be described by simple dynamical systems, namely systems of 
ordinary differential equations. Such situations occur, for instance, in 
Hamiltonian or dissipative classical mechanics and homogeneous chemical 
kinetics (evolution of species concentrations in a well-stirred tank). 

Such dynamical systems generally depend on several control 
parameters. When those parameters are varied, the topological properties 
of the system may change, a phenomenon known as bifurcation. For 
instance, the nature of the attractors that describe the asymptotic behavior 
of solutions may change from periodic (stable fixed points or limit cycles) 
to nonperiodic (so-called strange attractors); the system then displays a 
transition from order to chaos. 
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Generally such simple macroscopic systems do not account for the full 
dynamics, as they neglect, at least partly, microscopic degrees of freedom. 
The influence of such small-scale processes can be modeled by adding a 
relevant noise term to the original system. The first historical example of 
such an approach is the well-known Brownian motion problem, which 
leads to the Langevin equation. 

Topological properties are no longer relevant when noise is taken into 
account and should be replaced by measure-theoretic (invariant measure), 
dynamical (Liapunov exponent), or more probabilistic ones (exit time from 
a specified domain, for instance). To enlighten that point, let us examine a 
simple system which posesses a globally and linearly stable fixed point (this 
example will be revisited later). When a small-amplitude Gaussian white 
noise is added, the asymptotic behavior is no longer described by that fixed 
point (which is a topological feature); for almost every sample path the 
whole space is explored in the asymptotic regime with a frequency given 
by an absolutely continuous ergodic invariant measure (which weakly 
converges to a Dirac measure when the noise goes to zero). The associated 
density shows a strong enhancement near the deterministic fixed point. One 
may further investigate the effects of noise by calculating the Liapunov 
exponent (which quantifies the system's global sensitivity to a change in the 
initial condition), and correlation or response functions. One may also 
examine local properties, such as the mean exit time from a given 
neighborhood of the deterministic fixed point. 

We expect the sensitivity of a deterministic system to noise to depend 
greatly on its intrinsic stability. When the system is structurally stable, 
i.e., when small perturbations lead to a conjugate system exhibiting the 
same topological properties, the effects of noise are generally small and 
essentially appear as a blurring of the system's features (as will be shown 
in Section 3). More drastic changes are expected near a bifurcation point 
in parameter space, since the system is then sensitive to arbitrary small 
perturbations. 

In what follows, we inquire into the effects of noise on dynamical 
systems in the vicinity of a bifurcation point. The noisy system is obtained 
via the addition of a noise term to the deterministic dynamical system, 
which yields a Langevin-type equation. ~ Many results have already been 
obtained by studying the associated Fokker-Planck equation, (2) which 
makes it possible in particular to shed some light on noise-induced 
transitions/3) The concept of center manifold has been extended to noisy 
systems, which justifies the very use of the Langevin equation/4 7) The 
effect of noise has also been considered from the viewpoint of non- 
equilibrium thermodynamics/8~ In the present work we focus on the 
following point: Is it possible to give an alternative nontopological 
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definition of bifurcations, which remains meaningful for a noisy system? By 
examining simple systems (bifurcation normal forms), we show that the 
sharp deterministic bifurcation is replaced by a smooth transition zone. 
Therefore the answer to our question is in the negative. 

We emphasize the point that since we are dealing with one-dimen- 
sional systems (time is the only dimension in the problem), the only 
changes of behavior that may be assimilated to phase transitions occur at 
"zero temperature," that is, in the deterministic case (since the variance of 
noise a 2 plays the part of temperature). They correspond to deterministic 
bifurcations. The reader must therefore beware of fallacious analogies. 

The remainder of the paper is divided into six sections: We first 
introduce the required formalism (Section 2): Langevin equation, func- 
tional integral, Foker-Planck equation, relevant quantities. In Section 3 
very simple systems are investigated, casting some light on the basic effects 
of noise. Section 4 recalls some fundamentals of bifurcation theory 
(codimension, normal forms) and provides a frame for the problems dis- 
cussed in the following sections. 

Section 5 discusses the behavior of the invariant measure for noisy 
systems near a deterministic bifurcation point. Both saddle-node and 
pitchfork bifurcations are investigated. We show that the shape of the 
invariant density changes for the deterministic bifurcation value or 
undergoes no change, depending on the bifurcation one considers. 
Therefore this quantity seems rather inappropriate to investigate nontrivial 
efects of noise on a bifurcating system. In Section 6 we calculate (by 
analytical or numerical means) the Liapunov exponent for the systems 
previously introduced. We show that the addition of noise alters the 
sensitivity to changes in the initial condition (stabilization of the system, 
noise-dependent shift of the point where the Liapunov exponent vanishes 
or reaches an extremum). In Section 7 we study the effective potential for 
the supercritical pitchfork bifurcation. We show that an extended transition 
zone replaces the deterministic bifurcation. Conclusions of the present 
study are drawn in Section 8. 

Sections 2-4, which have been included to keep the present study as 
self-contained and elementary as possible, may be skipped by the reader 
already familiar with basic effects of noise on dynamical systems and 
bifurcation theory. 

2. F O R M A L I S M  

This part is devoted to the formalism required for dealing with noisy 
dynamical systems/9 12) For the sake of simplicity, we consider one-dimen- 
sional systems driven by an additive Gaussian noise b(t). The evolution of 
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such a system is described by a stochastic differential equation, known as 
the Langevin equation, which reads 

dx/dt =-f~(x) + b(t), x(O) = X o (2.1) 

f~(x) is the deterministic part, which we assume to depend on the sole 
parameter e, and X0 denotes the initial condition. The zero-mean Gaussian 
process b(t) is completely characterized by its covariance function 
Cov(t, t'). For a white noise [b(t)dt=adw(t), with w(t) the standard 
Wiener process] that function reads 

Cov(t, t') = o-26(t - t') (2.2) 

The characteristic functional C[y] of a stochastic process defined on the 
interval [0, T] may be deduced from the covariance function 

C[y] = exp - ~ dt dt' y(t) Coy(t, t') y(t') (2.3) 

For a Gaussian white noise it reduces to 

C[y]=exp[-�89 I:  dt y(t)21 (2.4) 

This functional completely determines, via its Fourier transform, the 
probability distribution of noise 

P[b]=det-~(~3,)  ~ ~ C [ y ] e x p  i dtyb (2.5) 

The determinant and the factor 2~ in the integration measure of this 
functional integral ensure the correct normalization of P[b]. 

Henceforth, we shall restrict ourselves to the simple case of Gaussian 
white noise. 

Let us introduce the transition probability P(X, T[ Xo), which is the 
measure of the set of path that start at X0 and reach X at time T. If 
Xb(TIXo) denotes the value at time T of the solution of (2.1) for a given 
sample path b(t) of noise, P(X, T] Xo) may be expressed as the average of 
6IX-Xb(TIXo)] over the noise probability density (2.5), 

P(X, TIXo) = (6[X--xb(TlXo)]) 
Using (2.5), we have 

(~[X-xb(rlxo)])=det-'(o,)f~ ~ ~b~x 

x f[x_x~( t [Xo)][exp( i I :d tyb)]C[y  ] (2.6) 
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The dependence on noise of the delta functional may be explicitly written 

(~[x-xb(t[Xo)] =det  [6b/~x[ 6[2-f~(x)-b(t)] ~[x (0 ) -Xo]  (2.7) 

The Jacobian term is readily evaluated as (13) 

det I ~- ~ =det(Ot) e x p ( - ~ d t - ~ )  (2.8) 

by using the Stratonovich stochastic integral and forward propagation in 
time. Inserting (2.4), (2.7), and (2.8) into (2.6) and performing the 
integration over b, we finally obtain 

P(X, TI Xo) = ~ ~x exp - -~- dt y2 

where the initial and final conditions imposed by the delta functions appear 
as integration bounds. 

We now derive the Fokker-Planck equation with the help of the 
Feynman-Kac formula. (14) Integrating over y in (2.9) (a straightforward 
Gaussian integration) yields 

P(X, rl Xo) = detm(~,) 

We integrate by parts the argument of the exponential, which yields 

P(X, Tl Xo)= exp [-U(X) Zaf(X~ ] 

x Nw[x] exp - ~ dt V(x) (2.11) 

where 

1 F ( d v 3  2 2 d2vn 
U(X)=fdxf~(x), V(x)=g[\dx j +~r ~xZj (2.12) 

and functional integration is performed using the Wiener measure 2w. The 
path integral in (2.11) is formally equivalent to the propagator kernel of 
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quantum mechanics, and the Feynman-Kac formula enables us to rewrite 
(2.11) as 

1 n = 0  

where ~O(x) satisfies the Schr6dinger equation 

0 -4 d2~ 
2 dx 2 + V~ = 2~ (2.14) 

Therefore, the transition probability is the solution of the Fokker-Planck 
(FP) equation 

OtP + Ox(fP) = �89 OxxP (2.15) 

with initial condition P(x, O L Xo)= 6(x-Xo) (i.e., the so-called principal 
solution of the FP equation). 

If we had used backward propagation in time in (2.8), the sign of the 
exponential in the Jacobian would have changed, yielding an effective 
potential of the form 

1~(dU52_0-2d2U? 
V(x) =-~ [_\ dx,] dx2 J (2.16) 

This potential is related to the Kolmogorov equation, the adjoint equation 
of (2.15), 

O,W-faxoW=�89 W, W(Xo, OIX)=f(X-Xo) (2.17) 

where W is the transition probability considered as a function of the initial 
condition Xo. 

The system's invariant measure /~(X)dX, which is the stationary 
solution of the Fokker-Planck equation, is also given by the long-time 
behavior of P(X, TI Xo), 

lira P(X, TL Xo)= I4X) (2.18) 
T ~ o o  

From (2.13) it is easily seen that this limit exists if the Schr6dinger 
equation posesses a normalized eigenfunction ~O o associated with the eigen- 
value 2 = 0 (which requires some constraints on f,). Associated with this 
eigenvalue is a solution of the form ~o = exp(S/~r2), where S satisfies the 
equation -0-2S"/2-(S')2/2+ V=0. Therefore, S =  U and the density of 
the invariant measure reads (2) 

/~(X) = X exp ~-5 g (2.19) 
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Notice that, due to the special form of the effective potential V, the 
solution S = U is obtained irrespective of the value of a. Hence, the WKB 
approximation becomes exact in the limit T ~ o0. The equation satisfied by 
S for small noise, - (S ' )2/2  + Vo = O, Vo =f2/2, is similar to the Hamilton- 
Jacobi equation, for the zero energy level, associated with the Hamiltonian 
H= [(dx/dt) 2- f2] /2 .  Therefore, in order to derive the invariant measure 
from the functional integral (2.10), it suffices to compute the minimum of 
the exponential term inside the integral, neglecting terms in a 2. This 
minimum, which corresponds to a trajectory with zero energy, is just the 
action S = U. 

The invariant probability measure/t(X) dX is ergodic, (is) 

rl~m. 1 ~r  f + ~  -~2 ~ dt f (x( t ) )= -~  dx F(x) f (x )  (2.20) 

This allows us to compute the Liapunov exponent 2 of the noisy dynamical 
system (2.1), 

2 = lim In [fix[ = rlirn ~ dt = dx #(x) ~x 

[~Sx(t) is the separation between two given trajectories, the initial con- 
ditions of which differ by ~Xo]. 

Another quantity of interest is the exit time from a domain, (~6) which 
measures the "lifetime" of an attractor of the noise-driven dynamical 
system. The exit time ~D from an interval D = (a, b), starting from the 
initial condition Xo, can be defined as 

rD(X0) = fD dx Io  dt W(Xo, Tfx) (2.22) 

Using the Kolmogorov backward equation (2.17), one obtains 

1G2 f~(Xo) OXoZD + ~ XoXoZD = --1 (2.23) 

with appropriate boundary conditions. For example, in the problem of exit 
through a potential barrier one imposes reflection at one boundary, 
rD(a) = 0, and absorption at the other, rD(b) = 0, where a and b are located 
on opposite sides of the barrier. The solution of (2.23) then reads 

~D(Xo) 
= a- ay .i.t( X ) 

The long-time behavior of the stochastic system for small noise can be 
studied by evaluating via the Laplace method the functional integral (2.10), 

822/50/1-2-23 
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which expresses the transition probability. (~7) The dominant contribution is 
given by the minimum of the so-called action functional S~[x], (iS) 

1 Tdt{[~c - a2~x } (2.25 S~[x] = ~o L(x)]2 + ) 

The extremal trajectories xc(t) are solutions of 

d V  0 1 2 Ycc= dxc' Vo=~f~(Xc) (2.26) 

Such an extremal trajectory is a path that maximizes the transition 
probability between the given endpoints; generally, it is not a solution of 
the deterministic system. 

The asymptotic form of the invariant measure can be derived in this 
framework, 

- lira cr 2 In #(x) = Inf So[x] (2.27) 
o" ---~ 0 

the infimum being taken in the set of trajectories that are defined on the 
semi-infinite interval [0, + o0[ and leave the deterministic stable fixed 
points. Therefore, #(X) builds up from large-deviation events with 
exponentially small probabilities. 

Dynamical quantities, such as correlation functions, can be 
investigated via the generating functional, which is defined by (19'2~ 

Z [ J ] =  l f~x exp ( So[__~_xa 2 ])j exp (i f Jx dt), z [ o ]  = 1 (2.28) 

For instance, the two-point correlation function is given by 

a2z[J] G(t, t ' )=  (2.29) 
ay(t) ay(c) 

Response functions can similarly be derived from a generating functional. 
As is well known, connected Green's functions are generated by the 
functional W[J] = -i In Z[J], whereas the so-called one-particle 
irreducible functions are related to F(~b), the Legendre transform of W[J], 

F[~b] + W[J]=f dtJ~b, ck=bW/6J (2.30) 

Usually one expands F(~b) in powers of the derivatives of ~ around a 
constant trajectory (since the main contribution to F[~b] comes from such 
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trajectories). The first term (which does not depend on the derivatives) 
then reads 

r0E~] = f Ve~['~] at (2.31) 

where the function Veer is known as the effective potential It enables us to 
obtain the vertex functions for zero external "momenta" and to define 
"renormalized" coefficients in the action. 

The functional integral formulation of stochastic processes of the form 
(2.1) admits an immediate generalization to d-dimensional or infinite- 
dimensional processes. (2~) The Fokker-Planck formalism may also be 
adapted to such cases, since the stochastic processes remain Markovian. 

On the other hand, general Gaussian correlated processes (2.3), as is 
well known, cannot be treated, at least exactly, in the framework of the 
Fokker-Planck equation, and approximate schemes must be developed. (e2) 
Such a problem does not arise in the framework of functional integration, 
where it suffices to replace the local action in (2.9) by a nonlocal one using 
(2.3)J 23~ Obviously, the Feynman-Kac formula is no longer valid in this 
case and the relation between the functional integral and a partial differen- 
tial equation breaks down. 

3. BASIC EFFECTS OF NOISE 

In this section we illustrate some basic effects of noise. ~24) First we 
revisit the example of a linear system given in Section 1, 

dx/dt=ex, e#O (3.1) 

When the fixed point x =  0 is globally stable (e < 0), the asymptotic 
behavior is described by a Dirac measure located at x = 0. 

If we add a Gaussian white noise with standard deviation a, the 
invariant measure becomes absolutely continuous with Gaussian density 
(stationary solution of the Fokker-Planck equation) 

/z(x) = (i/N) e x p ( -  ex2/o "2) (3.2) 

The system spends most of the time in a neighborhood of the deterministic 
fixed point, the size of which, tr(2e) -~/2, increases with the dimensionless 
parameter fl=e-~/2a; this parameter quantifies the balance between the 
conflicting effects of deterministic stability and noise-induced diffusion. 

Noise thus blurs the deterministic system's features. However, the 
effects of noise are deeper than is suggested by the behavior of the density 
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around x = 0. Indeed, the trajectories no longer converge to the stable fixed 
point. Due to large fluctuations, they wander erratically and visit distant 
regions often enough to rule out any vanishing of the density. Therefore, 
the system's topological properties are completely destroyed by noise: 
instead of a stable fixed point (topological concept), we are faced with an 
invariant measure (probabilistic quantity) with the whole space as support 
and presenting a local enhancement at x = 0. 

When e > 0 the system's instability forbids the existence of any ergodic 
invariant measure even in the presence of noise. 

In the deterministic case the Liapunov exponent (which measures the 
dynamical stability) is the derivative of the vector field at the fixed point. In 
the presence of noise it remains a meaningful quantity and retains its deter- 
ministic value 2 = 5, as can be calculated from its very definition (time 
average along a trajectory). Thus, noise does not affect the sensitivity to the 
initial condition. This results from the deterministic system's linearity, as 
emphasized by the following example. 

Let us add a (stabilizing) cubic term to a stable linear vector field 

d x / d t = e x + x x 3 + ~ r b ( t ) ,  e<O, x < O  (3.3) 

In the deterministic case the asymptotic behavior is governed by the sole 
linear part; the Liapunov exponent remains equal to 5. In the presence of 
noise the density of the invariant measure reads 

1 1 [/KX 4 2"~'] 
(3.4) 

and the Liapunov exponent 

,~ = ~ - 3~c x 2 # ( x )  d x  (3.5) 
- -  c l O  

A stabilization of the system occurs (the Liapunov exponent decreases with 
respect to the linear case) together with a localization of the invariant 
measure around x = 0 (the tail of the density decreases more rapidly than 
before). Thus, noise brings the nonlinear terms into play. The explanation 
is obvious; large fluctuations send trajectories far from the deterministic 
fixed point in regions where the nonlinearity dominates the deterministic 
dynamics. 

In this section we have dealt only with structurally stable systems (i.e., 
insensitive to perturbations) and, as expected, we observed quantitative 
rather than qualitative effects of noise on the nontopological properties. In 
what follows we consider the opposite case of structural instability, that is, 
the bifurcation problem. 
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4. B I F U R C A T I O N S  

We shall now proceed to an informal review of some fundamentals of 
bifurcation theory. (25'26) Consider the space V of C ~ vector fields on ~n 
with an equilibrium position at the origin of coordinates. Let F~ be a one- 
parameter family in V. For most values of the parameter e the vector field 
is structurally stable. This stability will eventually break down for certain 
values of the control parameter known as bifurcation values. 

Among bifurcations involving the fixed point, one distinguishes 
between local bifurcations, which are amenable to a local study near the 
equilibrium (change of stability of a fixed point, for instance), and global 
ones, such as homoclinization ~27'2s) (connection of the stable and unstable 
manifolds far from the fixed point). 

The dimensionality of the locus of bifurcation points in V is called the 
codimension of the bifurcation. The genericity and stability of a bifurcation 
depend on this codimension. 

A codimension-one local bifurcation occurs on a hypersurface of V 
and is generic (genericity of the transversal crossing of curves and hyper- 
surfaces). In addition, families of vector fields nearby a bifurcating family 
will undergo the same bifurcation. This entails the stability of codimension- 
one bifurcations. The two such bifurcations are the saddle-node bifurcation 
and the Hopf (subcritical or supercritical) bifurcation. 

Higher codimension bifurcations occur for vector fields on a surface 
that is not crossed by a generic one-parameter family. They are unstable, 
since families of vector fields lying arbitrarily near a bifurcating family may 
be found that do not display the same bifurcation scheme. 

If we limit ourselves to a subspace of V, the codimension of a given 
bifurcation may change. For instance, the pitchfork and transcritical 
bifurcations become generic if the vector fields exhibit certain symmetry 
properties. 

To study a local bifurcation, one need only to consider its normal 
form. Relevant phenomena are limited to a local submanifold of ~n, known 
as the local center manifold. Therefore, one may locally change variables so 
that the dynamics on the center manifold is described by a simple differen- 
tial system, the so-called normal form, which embodies the whole com- 
plexity of the bifurcation. 

In what follows we investigate the effects of noise on simple bifur- 
cations: the pitchfork and saddle-node bifurcations. In spite of its 
mathematical and physical interest, the Hopf bifurcation C2'5'7'8'29~ will not 
be dealt with in this paper, which is limited to bifurcations with one- 
dimensional center manifolds. 

The normal form of pitchfork bifurcation reads 

2 = ~ x + x  3 (4.1) 
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Bifurcation diagrams for pitchfork bifurcations displaying (--)  stable fixed points 
together with (...) unstable ones. (a) Supercritical case. (b) Subcritical case. 
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This bifurcation is generic if we restrict ourselves to a subset of V: the 
vector fields whose first and second derivatives along the center manifold 
vanish at the fixed point. According to the sign of the third derivative, the 
bifurcation is either supercritical (minus sign in the normal form) or 
subcritical (plus sign). 

In the supercritical case, a stable fixed point (e <0)  changes stability 
by giving birth to a pair of stable fixed points (5 > 0) (see Fig. la). In the 
subcritical case, a pair of unstable fixed points exists for e < 0 (see Fig. lb). 

The normal form of saddle-node bifurcation reads 

= e + x 2 (4.2) 

This bifurcation is generic in V and corresponds to the collapse at e = 0 of 
two fixed points with opposite stability (see Fig. 2). It plays an important 
part in type 1 intermittency, ~176 a continuous transition from order to 
chaos. This transition requires a local saddle-node bifurcation together 
with a reinjection process, which bring trajectories back to the region 
where the bifurcation takes place. That reinjection may be ensured by a 
homoclinic trajectory. 

Fig. 2. 
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Bifurcation diagram for saddle-node bifurcation displaying ( - - )  the stable fixed 
point and (.-.) the unstable one. 
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5. INVARIANT  M E A S U R E  

For a noise-driven dynamical system, bifurcations can no longer be 
defined as a change in the topological properties. However, in the deter- 
ministic case changes in nontopological quantities also occur at the bifur- 
cation point. The invariant measure, for instance, is different on either side 
of the saddle-node or pitchfork bifurcation; the Liapunov exponent 
changes from negative (stable fixed point) to positive (chaotic regime) at 
the intermittent threshold. 

One may be tempted to give an alternative definition of bifurcation for 
smooth dynamical systems in terms of such quantities, the most fundamen- 
tal of which is the invariant measure, a definition that might still hold for 
noise-driven systems. 

Zeeman has advocated this point of view (31) and proposed to define a 
noisy bifurcation as a qualitative change in the invariant density. This 
amounts to introducing a new definition of structural stability where two 
systems are equivalent if and only if the densities of their invariant 
measures are differentiably conjugate. 

We shall test on specific examples the possible usefulness of that view- 
point. The normal form of the noisy supercritical pitchfork bifurcation 
reads 

Yc = ex -- x 3 + ab( t ) 

and the absolutely continuous invariant measure has density 

# ( x ) = l e x p [ - ~ ( e x 2 - X - - - f ) ]  

where 

N=(~)I/2exp(~---~)K1/4(~---~) 
N =  al/2F(1/4) 

23/4 

g2 N~(2)I/2exp (-~ff2)IKt/4 (~---~)I-TC21/211/4 (~---~) ] 

for e<O 

for e=O 

for e>O 

(5.1) 

(5.2) 

(K1/4 and 11/4 are modified Bessel functions). Maxima of the density are 
located at the stable deterministic fixed points and the transition from one 
peak density to a double-peaked one occurs at the deterministic bifurcation 
value e = 0 for any level of noise ~r, no noise-induced shift of the bifurcation 
point being observed (see Fig. 3). 
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Fig. 3. Invariant density for the noisy pitchfork bifurcation (a=0.05): ( - - )  e=0.1, (.--) 
= --0.1. 

This behavior does not agree with rough intuition. A double fixed- 
point structure blurred by noise should behave, for e > 0 and small values 
of the ratio c~ = e/~r (the relevant intrinsic parameter in the problem we 
consider), barely differently from a unique noisy fixed point. Therefore we 
expect, a priori, a shift of the bifurcation point (assuming that such a point 
may be defined) toward positive values of e. Such a shift is observed on 
other quantities. Consider, for instance, for positive s, the mean transit time 
from one of the stable deterministic fixed points (.~/-e, for instance) to the 
unstable deterministic fixed point 0, 

a - . /7  dyexp ~5 dz(ez -z3)  (5.3) 

As could be expected, this quantity diverges when the level of noise tends 
to zero. We set z(e, ~r)= T*(~)/~r, where c~ is the intrinsic parameter and 

As c~ is varied, T* displays a smooth transition between two distinct 



360 Meunier and Verga 

regimes (see Fig. 4). For small values of ~ (the fixed points are then close 
together and the transition between them is governed by local fluctuations) 

T*(~) ~ ~ ' / 2 r ( 1 / 4 ) / 2 3 / 4  (s.5) 

whereas for large values of e (the fixed points are then widely separated 
and the transition between them is governed by large deviations) the 
Laplace formula yields 

T*(c 0 ~ (~/21/2~) exp(c~2/2) (5.6) 

We may roughly estimate the location of the transition zone by the 
vanishing of the second derivative; this yields c~ ~ 0.6. This transition in the 
range ~ > 0 has no conspicuous counterpart in the behavior of the invariant 
density. 

We now consider the saddle-node bifurcation. The noisy normal form 
is 

:~ = e + x 2 + ~ b ( t )  (5.7) 

No invariant measure exists for this problem. We shall therefore consider 
related problems with a different behavior of trajectories at infinity. 

. . . .  I . . . .  I . . . .  
0 . 5  t 

% 

O( 

Fig. 4. Mean transit time T* versus intrinsic parameter e. 
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First we define a flow on a compactified space by assuming that 
whenever a trajectory goes to + oe it reenters at - ~ .  The density #(x) of 
the invariant probability measure, which satisfies #(oe ) =  0, then is 

(5.8) 

where 

N(a, ~) = crl~li/4fo dz z--75ex p -2lc~] 1/2 sg(c~)+]-~ 

= cr ]el 1/4 N(cQ (5.9) 

is the intrinsic parameter e3/cr 4 and the notation sg(cQ stands for sign of ~. 
Using the Laplace formula, one easily checks that, when a tends to zero, 
#(x)dx converges to the deterministic invariant measure. This latter 
measure is a Dirac measure located at the stable fixed point for e ~< 0 and 
an absolutely continuous measure with Lorentzian density ~/~/[~(e + x2)] 
in the opposite case. 

For a given level of noise a, the invariant density profile displays no 
qualitative change when e is varied (see Fig. 5) other than a shift of the 
maximum toward negative values of e (for ~ > 0 or slightly negative) or 
toward positive values of ~ (for e < 0  and I~[ large enough). 

To estimate this shift, we may calculate the mean value of x, which, in 
the deterministic case, is zero for positive values of e (we actually misuse a 
bit the expression "first moment," since the corresponding integral tends 
only symmetrically to zero) and to - I~] 1/2 for negative values of e. This 
yields 

le[ 1/2 1 yl/2 1/2 (5.10) 
( x ) =  2 N(~) dy exp -2 l~ l  s g ( ~ ) y + - ~  

For e < 0 the shift obviously originates in the deterministic dynamics. The 
system reads 

)~ = - 2 ( - e )  1/2 y + y2 + ~rb(t) (5.11 ) 

where y = x +  [elm is the departure from the stable deterministic fixed 
point - ] e l  1/2. The effect of the nonlinear deterministic term adds to noise- 
induced deviations toward positive y values and counteracts deviations in 
the opposite direction. Such a reasoning is valid only when the nonlinear 
term does not play a dominant part in the dynamics near the deterministic 
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Fig. 5. Invariant density for the noisy saddle-node bifurcation, assuming cyclical reentrance: 
(a) (. . .) e=O.1, a = O  (deterministic case); ( - - )  e=0.1,  a=0.178 (noisy case). (b) (...) 
e = -0.1,  a = 0  (deterministic case); ( - - )  e = -0.1,  ~r =0.178 (noisy case, a = 1). 
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fixed point, that is, for 1~1 large enough, and yields a simple explanation for 
the observed shift toward positive values of x. 

Higher order moments of the invariant measure cannot be defined. In 
fact, the asymptotic form for high values of rx] is Lorentzian and reads 

1 1 r(l~l~l/2 1/4--N(0~ ) ] (5.12) 
x~ L \~ )  Io~1 

In contrast, higher moments behave very differently in the deterministic 
case, according to the sign of 5; for e > 0 the measure is Lorentzian and no 
moment of order higher than one exists, whereas in the opposite case all 
moments are, loosely speaking, zero. 

Thus, for finite noise level a, the invariant density displays no 
qualitative change in profile or moments when e is varied except for a first 
kind discontinuity at ~ = 0 in the derivative d(x)/cle of the first moment. 

In the intermittent transition to chaos, trajectories are reinjected 
randomly inside the finite region where the saddle-node bifurcation takes 
place. (32) The behavior of the invariant mesure is nonetheless similar to the 
previous example. In the deterministic case, the invariant mesure undergoes 
at the bifurcation point e = 0 a weakly continuous transition from Dirac 
measure to an absolutely continuous and locally Lorentzian measure. (33'~4) 
In the presence of noise, the measure is always continuous, with a sharp 
peak in the region where the saddle-node bifurcation takes place and its 
density displays no transition. 

These examples show that a noisy bifurcation is not necessarily 
connected with a qualitative change in the profile of the invariant density; 
they also suggest that such changes--if  any--occur at the deterministic 
bifurcation value. Thus, the invariant measure, though a quantity of major 
interest, seems inadequate for investigating the detailed effects of noise on 
bifurcations, especially if the study is restricted to the sole profile and its 
qualitative changes. It is therefore necessary to examine other relevant 
quantities. 

6. L I A P U N O V  E X P O N E N T  

Deterministic systems exhibit a singularity in the Liapunov exponent 
at a bifurcation value. 

First we consider the supercritical pitchfork bifurcation. In the deter- 
ministic case, the Liapunov exponent is then given by the derivative of the 
vector field at the stable fixed point: for e < 0, 2(e)= e, whereas for ~ > 0, 
2(5) = -2e  (see Fig. 6). The derivative d2/& is thus discontinuous at e = 0 
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(where the exponent vanishes). When noise is added, the Liapunov 
exponent then reads 

'1 for ~=2 3K1/4(o~2/4 ) 

6re 
4 =  F(1/4)2 a for e = 0  (6.1) 

s I I3/4(0~2/4)+1-3/4(~2/4)q-11 for s>O 
2 = --~ 3 i1/4(0~2/4 ) -4- I_1/4(0t2/4) 

where I and K are modified Bessel functions and e = e/~r is the intrinsic 
parameter. For small values of c~ we obtain quite logically the asymptotic 
expression 

6/~ 
,~ r(1/4) 2 a (6.2) 

When E is varied, two distinct regimes may still be observed (see Fig. 6). 
However, the transition has been smoothened by noise and a quadratic 

Fig. 6. 
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Liapunov exponent for the noisy supercritical pitchfork bifurcation versus bifurcation 
parameter: ( . . .)a = 0 (deterministic case), ( - - )  a =0.1 (noisy case). 
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maximum at ~ ~ 0.25 replaces the previous singularity. One notices that the 
Liapunov exponent no longer vanishes (2 ~ -1.4o- at its maximum); it is 
increased with respect to its deterministic value for high values of e 
{ 2 = - 2 ~ [ 1 - 3 / 4 ~ 2 + O ( 1 / ~ 4 ) ]  for e > 0  and high values of ~} and 
decreased for low values of e {2 = el1 + 3/~ 2 + O(1/~4)] for ~ < 0 and high 
values of ~}. Noise thus affects the system's stability. Moreover, the 
maximum of the exponent is shifted toward positive values of ~, as could be 
expected on intuitive grounds. We also remark that the transition occurs at 
distinct values of ~ for the Liapunov exponent and the mean transit time 
(cf. Section 5). This stems from the fact that these two quantities are 
basically different. The mean transit time is a probabilistic quantity, 
meaningless in the deterministic case, and measures noise-induced 
deviations. On the other hand, the Liapunov exponent is a dynamical 
quantity, well defined for the deterministic system, which smoothly varies 
with noise intensity and is connected with correlation properties. 

We now examine the saddle-node bifurcation. 
If we impose no condition on the long-distance behavior of trajec- 

tories, the Liapunov exponent is undefined for ~ > 0, since solutions blow 
up in a finite time. 

We therefore rather consider the related well-behaved systems we 
introduced in Section 5. 

In the case of cyclical reentrance at - ~ ,  we have 2 = 2 ( x ) ,  where 
( x )  is given by formula (5.10). For the deterministic systems, 2 is equal to 
- 2  ]g] 1/2 for e < 0 and is zero for e > 0 [assuming that, though the integral 
(2.21) is only symmetrically convergent, we may still define in some sense 
2]. When noise is added to the system, the Liapunov exponent is well- 
defined for e > 0. It is nonpositive and steadily increases with e, no longer 
displaying any singularity at the deterministic bifurcation value e = 0 (cf. 
Section 5). It is shifted toward lower values for e > 0 or slightly negative 
and toward higher values in the remainder of the parameter range. 

We now examine a simple model of intermittent transition: We assume 
that whenever a trajectory leaves the interval [ - A ,  d ], where its dynamics 
is given by the saddle-node normal form (5.7), it immediately reenters this 
region with uniform probability. The Liapunov exponent 2 vanishes at 
e = 0 with a square root singularity. When noise is added, 2 can be com- 
puted numerically (see Fig. 7). The singularity then disappears: The 
derivative d2/de remains finite at the point e*>  0 where 2 vanishes. It is 
tempting to consider e* as the new bifurcation value, as the transition from 
periodic to aperiodic regime actually occurs at this point. This may be 
quite justified from an operational viewpoint, since the Liapunov exponent 
is the relevant "order parameter" in transitions from order to chaos. 
However, one should probably not jump to conclusions, since other quan- 
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tities of interest will certainly display transitions between the two regimes 
at other values of e. One also notices that the system's stability is decreased 
with respect to its deterministic value noise for ~ >0  and increased for 
sufficiently negative values of e. 

We close the present discussion with two remarks: 

1. The Liapunov exponent is rather insensitive to the Gaussian 
nature of noise: Quasi-identical results are obtained for Gaussian and 
uniform noises of the same variance. 

2. Similar results were obtained by Hirsch et aL (35) They observe a 
shift of the bifurcation point toward negative values of ~. This difference 
from our results arises from the adoption of a different reentrance process 
in their paper. Indeed, though the analytic part of their paper deals with a 
uniform reentrance process, the numerical computation of the Liapunov 
exponent is performed using the logistic map. This illustrates the high 
sensitivity of the Liapunov exponent to this feature of the model. This 
point is further illustrated by the opposite effects of noise on stability 

0,0 

0.0 6 
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0.02 

I | I 
-3  - 2  - I  o~ 

/~///////// 
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d "  I I i II 

" ' ~ E ' '^-3'uu ) 

Fig. 7. Liapunov exponent for intermittency versus bifurcation parameter: ( -  - )  cr = 0 (deter- 
ministic case), ( - - )  o = 0.02 (noisy case). Uniform reentrance in the interval [--0.08, 0.08] is 
assumed. Quasi-identical results are obtained for Gauss ian and uniform noises with the same 
variance. 
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displayed by the two models we analyzed (cyclical reentrance versus 
random reentrance). 

Thus, unlike the invariant measure, the Liapunov exponent displays 
noise-induced shifts of the transition point between qualitatively different 
regimes. However, this transition in most cases is perfectly smooth. 
Moreover, if we consider other quantities (invariant measure, exit times; cf. 
Section5), we observe transitions for distinct values of the control 
parameter. This forbids us to define an effective bifurcation value. In the 
following sections, we focus on the more appropriate notion of "bifurcation 
region." 

7. E F F E C T I V E  P O T E N T I A L  

Limiting our study to the pitchfork bifurcation, we now investigate the 
properties of the effective potential V~,~ (cf. Section 2). This potential will 
allow us to define an effective bifurcation parameter er(~, 0.) and an exten- 
ded "bifurcation zone." The generating functional of correlation functions 
(2.28) reads 

Z[J]=-~f Nxexp { 0" 2 

In the noiseless limit 0"2~ 0 the associated effective potential simply reads 

V~,~(~b) = �89 2 - e~b 4 + �89 6 (7.2) 

Neglecting nonlinear terms, the two-point Green's function (2.29) is given 
by 

Gml(  t, t ' )  = = (a2 /2e )  e x p ( - e l t -  t'j ) (7.3) 

We define the effective (renormalized) bifurcation parameter by 

g~(e, cr ) = ( dZV~, , /dqk2)r  (7.4) 

It reduces in this limit to er=e.  Whereas for e < 0 ,  V~, o has only one 
quadratic minimum, when ~ becomes positive, it develops three minima 
related to the deterministic fixed points (see Fig. 8). Therefore, the deter- 
ministic bifurcation point e = 0 corresponds to a change in the form of the 
"noiseless" effective potential V~,o. 

822/50/1-2-24 
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Fig. 8. Lowest order approximation V~, 0 to the effective potential: (--) 5=0.1, ( - - )  
e = -0.1. 

Now we consider the qualitative effects of a small noise on the deter- 
ministic system. We expand the potential in powers of (r and restrict out- 
selves to the first corrective term - 3 o 2 ~ 2 / 2  to the noiseless effective poten- 
tial. This corrective term entails qualitative changes in the potential profile. 
A region arises, delimited by lel <3 ma, where the effective potential 
develops two neighboring minima (see Fig. 9). This region, which 
obviously dissapears at a = 0, separates the one-fixed-point zone 
(e< -31/2a) from the three-fixed-point zone (e> 31/2o'). Notice that in the 
three-fixed-point region the external minima 

I4+ X+ = ___e 1/2 1+ + O ~-~ (7.5) 

are slightly shifted with respect to the deterministic stable fixed points 
+ el/2 (the explanation is the same as in Section 5), whereas in the two-well 
zone the two minima are not located near those fixed points. 

One may interpret the appearance of such an extended region as a 
blurring by noise of the bifurcation point. It is related to the fact that the 
different relevant quantities in the problem are regular functions of the 
bifurcation parameter and, since the local or global character in space and 
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Fig.  9. 
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Effective potential V,,~ to first order: ( - - - )  ~ :0 . l ,  ~=2~/3~; ( - - )  ~=0.1, e=0; 
(--) o=0.1, ~:  -2~/3~. 

the characteristic dynamical time scale depend on the quantity that is con- 
sidered, the qualitative changes of regimes they undergo occur for distinct 
values of this parameter. Thus, in the presence of noise, the effective poten- 
tial displays a "bifurcation region," rather than a bifurcation point. The 
boundaries of that region are given by 

~r(~,  O') = 0 ( 7 . 6 )  

For arbitrary a, we shall define the transition region by the same criterion. 
In principle, the effects of noise on the effective potential can be 

rigorously studied using perturbative expansions, such as the loop expan- 
sion of Z[J]. For instance, one may think of expanding it in powers of a, 
the first term being no other than the previously studied "noiseless" effec- 
tive potential. This expansion is not trivial, since the action itself depends 
on a and a consistent ordering thus becomes difficult. Moreover, we 
remark that the noiseless limit, which corresponds to mean field theory, 
becomes meaningless near the deterministic bifurcation point e = 0 due to 
the non-Gaussian character of fluctuations. Therefore, a small-a expansion 
is meaningless in the bifurcation region and we shall proceed differently. 
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Since, as shown before, the relevant quantities mainly depend on the 
intrinsic parameter e = e/a, it is necessary to introduce a scaling transfor- 
mation to take into account the essential effects of noise in the bifurcation 
region. After the change of scale 

x ~ x/a m, t --* at, j ~ f f s / 2 j  (7.7) 

the generating functional may be written 

~2 
Z[J] =-~l f D x e x p ( i f d t J x ) e x p [ -  fdt(~---2+-~ X 2 

- -  O~'X'4 "1- T - -  X 2  (7.8) 

In terms of a graphical representation, the loop expansion of the effective 
potential contains a subclass of diagrams with self-lines (obtained by 
pairing two legs at a given vertex). These "infrared"-divergent terms can be 
summed over by introducing the Wick ordering of monomials, denoted by 
:x":, in the action. We take the rescaled version of (7.3) as the free 
propagator to compute the Wick monomials, thus considering as usual the 
negative "mass" term as part of the interaction potentiaU '4) After Wick 
ordering we finally obtain 

Z [ J ] = l f D x e x p ( i ;  dtJx)exp 

§ (7.9) 

where m 2 =  45/4~ 2 -  9 + 0~ 2. The zero-loop effective potential is now 

m2 

=5- r + r  (7.10) 

The contribution of the following term in the perturbation series comes 
from the two-loops diagram: 

V(~2)(r = -3(10r 2 + 15 - 4c~) 2 r (7.11 ) 

where I(cr is given by 

1 r +~ dkl dk2 
I(~) = ~ J - ~  [(kl + k2) 2 + m2](k 2 + rnR)(k~ + m 2) (7.12) 
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Using the identity 1/a = ~ dp e-ap, we can transform the integral into 

47z Pl + P2 

exp(-m2p3)  

PlP2/(Pl + P2) + P3 

1 f o ~ d p l d P 2 e x p ( m 2 _ _  
4~ Pl + P2 

( m2 PlP2 ~ x Ei \ - ~ /  

PiP2 ~ exp[_m2(p~  +P2)  
p]--+~ 2/1 

(7.13) 

where Ei denotes the exponential integral function. (36) The change of 
variables p~ + P2 = u, p~ = uv then yields 

008 6 
I ( c Q = ~ o  dvln 1+  = m2 

Therefore, to second order in the loop expansion, the renormalized bifur- 
cation parameter is given by 

which yields for the bifurcation region the estimate ~ = ( -0 .73 ,  0.82). 

8. CONCLUSION 

We now summarize the results of our study and give an elementary 
explanation for the appearance of an extended bifurcation region in noisy 
dynamical systems. 

Let us list our main conclusions: 

1. In noisy systems topological concepts become meaningless. Bifur- 
cations must be redefined in terms of invariant measure, dynamical quan- 
tities, and probabilistic ones. 

2. Noise smoothens the transition: It suppresses singularities (as 
observed in every model we consider). 

3. Dynamical or probabilistic quantities generally display noise- 
induced shifts of the transition point between the two regimes. 

4. Such a shift never occurs for the invariant measure and its 
moments. The changes, if any, occur at the deterministic bifurcation value. 

5. Since the different relevant quantities undergo transitions for dis- 
tinct values of the control parameter, it is meaningless to define an effective 
bifurcation value. 
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Fig. 11. Noisy  bifurcation diagram for supercritical pitchfork bifurcation displaying ( - - )  
stable fixed points and ( . . . )  unstable ones. Stable fixed points are surrounded by a zone 
of local fluctuations (area enclosed by the dashed curves). The region of non-Gaussian 
fluctuations approximately ranges from e = - a  to 8 = a. Here a = 0.1. 

6. One may introduce the more appropriate concept of a bifurcation 
region inside which the transitions discussed above take place. In fact, such 
a region naturally appears when one studies quantities such as the effective 
potential. 

Restricting ourselves for the sakes of clarity to the pitchfork bifur- 
cation, we now give a simple interpretation of the bifurcation region. 

Figure 10 pictures the "noisy" bifurcation diagram. Each stable fixed 
point is surrounded by a zone which depicts the blurring due to local 
fluctuations. We have defined this region as the set of points where the 
invariant density exceeds half its maximum value. For ]el large enough, 
each fixed point is embedded in a zone, the width of which is of order a/x/e 
(one or two nearly Gaussian peaks in the invariant density). The situation 
changes near e = 0, where local fluctuations are no longer Gaussian and the 
standard deviation is on the order of ~r 1/2. We are then faced with a more 
complex structure (two neighboring deterministic stable fixed points 
separated by an unstable one), which may be assimilated to a single 
"noisy" feature. 
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This is analogous to what we observed in the effective potential (cf. 
Section 7). In fact, let us discuss the quantum problem associated with this 
potential. 

For e sufficiently negative, the potential presents a single well 
corresponding to the deterministic stable fixed point (cf. Fig. 9); the ground 
state has one single maximum and the dynamics is characterized by the 
single time scale 1/e corresponding to motion in the well. 

For e positive and large enough, the potential exhibits two deep wells 
corresponding to the stable fixed points. They are separated by a 
metastable state associated with the unstable fixed point. The ground state 
is localized in the two external wells and the dynamics exhibits two distinct 
time scales: the rapid scale of motion in a well (local fluctuations) and the 
slow time scale of tunneling (transit between the two fixed points due to 
large deviations). 

In the intermediate range of e, the potential has two wells. The ground 
state is not localized in these wells and a single time scale governs the 
dynamics, as in the single-fixed-point case. 

We may therefore define the bifurcation region as the range of 
parameter values where nonlinear terms play a prominent part in the 
dynamics and fluctuations are not Gaussian. Since the standard deviation 
for such fluctuations is of order a, this yields the estimate ]e[ ~< a for the 
bifurcation region, in agreement with the results of Section 7. This 
agreement is not fortuitous, as we define the endpoints of the bifurcation 
region in the previous section by the vanishing of the "mass term" in the 
effective potential. It corresponds precisely to the onset of non-Gaussian 
fluctuations. 

The upper bound (whose value is only indicative, due to the 
smoothness of the transition) corresponds to the merging of the two 
"dressed" fixed points. It may be estimated as the value of e at which 
equality of the two time scales (local fluctuations and large deviations) 
occurs. It may also be defined as the value at which the two stable fixed 
points are separated by about twice the standard deviation ae -~/2. 

As the deterministic system has a single fixed point in the range e ~< 0, 
we could not think of any definition of the lower bound other than the 
previous one, which is based on the nature of fluctuations. 

Finally, it is of note that the signature of the noisy bifurcation on the 
invariant density resides not so much in the appearance of a double peak at 
e = 0 as in the existence of an extended region around this value where 
local fluctuations are not Gaussian. 
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